Rubidium Moon

This may look like one of Saturn’s moons, but it’s actually a tiny sphere of metal rubidium -- an unexpected byproduct in a new process that enables Magnetic Resonance Imaging (MRI) of air-filled organs like the lungs. For imaging lungs, patients inhale “hyperpolarized” xenon gas, which is in a special state that allows it to “light up” lung functionality. Hyperpolarization requires contact with laser-illuminated rubidium vapor.

Dielectric Duke

This Duke “D” is being lit by electromagnetic waves that are normally invisible to the human eye. But they can be seen here thanks to a dielectric metamaterial filter created by Willie Padilla. Metamaterials are synthetic materials composed of individual, engineered cells that together produce properties not found in nature. In this case, that’s the ability to absorb energy in any specific range across the electromagnetic spectrum and convert it into heat.

Shooting Nanowires

The “shooting star” patterns in this Mahato Contest Runner-Up aren’t just dazzling to look at – they may also be useful electronics. Graduate students Kristen Collar and Jincheng Li first found these patterns while growing thin films of the semiconductor gallium arsenide. The “stars” start as droplets of liquid gallium on the film surface; as the film grows, they slowly move across the surface, leaving small solid trails -- nanowires -- in their wake.

Pint-Sized Monkey

This stunning x-ray of a Callimico monkey skeleton, posed as if preparing to jump, was collected by visiting Professor Hesham Sallam at the Duke SMIF lab. In the wild, these pint-sized monkeys can be found in the dense underbrush of the upper Amazon rainforest, leaping from branch to branch in search of tasty berries or bugs.


Subscribe to RSS - Technology