Righting Acid Rain

Fixing the damage done to U.S. forests is easier said than done
Share Share This
Jun 24, 2016

DURHAM, N.C. – A legacy of acid rain has acidified forest soils throughout the northeastern United States, lowering the growth rate of trees. In an attempt to mitigate this trend, in 1999 scientists added calcium to an experimental forest in New Hampshire; tree growth recovered, but a decade later there was a major increase in the nitrogen content of stream water draining the site.

So reports a new paper in the Proceedings of the National Academy of Sciences by scientists from the Cary Institute of Ecosystem Studies, Duke University and Syracuse University.

Gene Likens, president emeritus of the Cary Institute and a co-author on the paper, participated in the calcium addition, which took place at the 7,800-acre Hubbard Brook Experimental Forest in New Hampshire’s White Mountains. Calcium concentrations in forest soils at the site had been depleted due to prolonged exposure to acid rain. The goal of the large-scale experiment was to test if restoring calcium to these soils would result in improved forest growth.

Likens and colleagues added 2,600 pounds of Wollastonite pellets, a calcium silicate source, to a 30-acre forested watershed. Over time, the soil pH and acid-neutralizing capacity of soils and stream water increased significantly and forest growth rebounded. Sugar maples, a dominant canopy species with a high calcium requirement, began to recover.

“For nearly ten years, it looked like our predictions were correct,” Likens says. “The calcium was largely retained and the forest was growing. Then, in 2010, we noticed streams draining the treated site had elevated nitrogen levels. By 2013, yearly inorganic nitrogen losses were thirty times what we expected, an increase we had only seen after forest clear-cutting experiments.”

Growing forests typically act as nitrogen sinks, with trees retaining nitrogen in their biomass. Yet a decade after the calcium addition, the treated site did the opposite, acting as a nitrogen source and leaking high levels of inorganic nitrogen into nearby streams. This occurred at a time when atmospheric nitrogen pollution was declining and trees were not being cut down.

Co-author Emily Bernhardt, a biogeochemist at Duke University, says, "Results pose interesting questions about whether acid deposition has enhanced the way that the forest floor component of soils store carbon and sequester nutrients, and, if so, how this will change in response to the recovery of historic acidic conditions throughout the northeastern U.S."

The study’s authors suspect that when the calcium addition lowered the acidity of forest soils, it enhanced microbial processing of soil organic matter – releasing nitrogen stored in the forest floor. Other researchers at Hubbard Brook have been studying the forest floor and have found that soils in the treated watershed have decreased amounts of organic matter. The exact mechanism leading to nitrate losses remains under investigation.

Says Likens: “Long-term, comprehensive research is essential to advancing scientific understanding.  Major, unanticipated impacts of an acid rain mitigation experiment took a decade to emerge. Our ability to track this study over time has shed new insight into watershed dynamics. In the end, preventing environmental degradation is easier than fixing the damages done.”


CITATION: “The Forest Grows, but the Ecosystem Leaks: An Acid Deposition Mitigation Experiment Increases Both Forest Biomass and Nitrogen Export,” Emma J. Rosi-Marshall, Emily S. Bernhardt, Donald C. Buso, Charles T. Driscoll, Gene E. Likens; June 22, 2016, Proceedings of the National Academy of SciencesDOI: 10.1073/pnas.1607287113

Note: This article originally was originally published, in longer format, by the Cary Institute for Ecosystem Studies.


Tim Lucas, 919/613-8084 or tdlucas@duke.edu